Course Type	Course Code	Name	L	T	P	Credits	
DC	NCSC501	ADVANCED DATA STRUCTURES AND ALGORITHMS	±3	0	0	3	

Course Objective

To provide knowledge of advanced level computer algorithms with considerable depth, analysis and their applications. This course will also provide a strong foundation for research in many areas of computer science.

Learning Outcomes

- To impart knowledge of advanced algorithms
- To familiar with some advanced data structures
- To know the application areas of such algorithms and data structures

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome To understand how to analyze algorithms using advanced techniques with some examples.			
1	Amortized Analysis: Aggregate Analysis, Accounting Method And Potential Method.	3				
2	Dynamic Programming: Assembly Line Scheduling, Matrix Chain Multiplication.	3	To understand how to design algorithm using dynamic Programming for specific applications.			
3	Graph Algorithms: Topological Sorting, Strongly Connected Component, Single Source Shortest Paths in DAG, Johnson's Algorithm. Flow networks: The Ford-Fulkerson method.	7	To familiar with advanced level graph algorithms with their applications.			
4	Computational Geometric Algorithms: Geometric Searching Algorithms, Segment Intersection Problems.	3	To familiar with some geometric algorithms and their real applications.			
5	Polynomials and FFT: Representation, DFT, FFT (Recursive & Iterative).	3	To impart knowledge about DFT computation and FFT.			
6	String Matching Algorithms: Naïve Approach, Finite Automata Approach, Rabin-Karp And Knuth-Morris-Pratt Algorithm.	5	To understand the design of designing various string matching algorithms.			
7	Matrix Algorithms: LU Decomposition, LUP Decomposition, Linear System of Equations Solver.	3	To learn how to use matrix methods to solve linear system of equations and how to obtain the inverse of a high dimensional matrix.			
8	Approximation Algorithms: Vertex Cover Problem, Travelling Salesman Problem, Set Cover.	2	To understand how to develop approximation algorithms for some NP complete/NP hard problems.			
9	Randomized Algorithms: Randomized Quicksort, Minimum Cost Spanning Tree.	2	To familiar with the design of some specific randomized and parallel algorithms.			
10	Mesh and Hypercube Algorithms: Broadcasting, Prefix computation, Data Concentration and Sorting algorithms	3	To familiar with algorithm design on paralle computers.			
11	Advanced Data Structures: kd-Tree, Binomial and Fibonacci Heaps., Range Trees and their Applications.	8	To learn how to represent and design algorithms for various operations on these advanced level data structures.			
	Total	42				

Text Books:

1. Cormen, Leiserson, Rivest and Stein, Introduction to Algorithms, Prentice Hall of India, 3rd Edition, 2010

Reference Books:

- 1. Mark De Berg et al., Computational geometry: Algorithms and Application, 3rd edition, Springer, 2008.
- 2. E. Horowitz, S. Sahni, and S. Rajasekaran, "Fundamentals of Computer Algorithms", Universities Press.